Problem 5.26

5.25 through 5.28 Determine by direct integration the centroid of the area shown.

\[y = b \left(1 - \frac{k}{a}x^2\right) \]

For \(x = a, y = 0 \)

\[c = b \left(1 - \frac{k}{a^2}\right) \]

\[r = \frac{1}{a^3} \]

\[y = b \left(1 - \frac{x^3}{a^3}\right) \]

\[\bar{x} = \frac{1}{A} \int_0^a x \, dA = \frac{1}{A} \int_0^a y \, dx \]

\[A = \int_0^a \left[b \left(1 - \frac{x^3}{a^3}\right)\right] \, dx = b \left[x - \frac{x^4}{4a^3} \right]_0^a = \frac{3}{4} ab \]

\[\bar{x} = \frac{1}{b} \int_0^a x \, dy = \frac{1}{b} \int_0^a y \, dx = \frac{1}{b} \int_0^a \left[b \left(1 - \frac{x^3}{a^3}\right)\right] \, dx = \frac{1}{2} \int_0^a \left[1 - \frac{x^3}{a^3} + \frac{x^6}{a^6} \right] \, dx \]

\[= \frac{1}{2} \left[x - \frac{x^4}{4a^3} + \frac{x^7}{7a^6} \right]_0^a = \frac{a^2 b}{3b} \]

\[\bar{A} = \bar{x} = \frac{3}{16} \, a^2 b \]

\[\bar{y} = \frac{2}{5} \, a \]

\[\bar{y} = \frac{2}{5} \, b \]

\[\bar{A} = \bar{y} = \frac{9}{20} \, a b^2 \]

\[\bar{y} = \frac{9}{20} \, b \]
Problem 5.1

5.1 through 5.8 Locate the centroid of the plane area shown.

\[\overline{X} \Sigma A = \Sigma \overline{X} A \quad \overline{X}(15600) = 864 \times 10^3 \]
\[\overline{X} = 55.4 \text{ mm} \]

\[\overline{Y} \Sigma A = \Sigma \overline{Y} A \quad \overline{Y}(15600) = 1464 \times 10^3 \]
\[\overline{Y} = 93.8 \text{ mm} \]

Problem 5.3

5.1 through 5.8 Locate the centroid of the plane area shown.

\[\overline{X}(11) = 1.15 \]
\[\overline{X} = 1.045 \text{ in.} \]

\[\overline{Y}(11) = 3.95 \]
\[\overline{Y} = 3.59 \text{ in.} \]
5.1 through 5.8 Locate the centroid of the plane area shown.

Problem 5.6

By Symmetry: \(\bar{x} = \bar{y} \)

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>(A) mm(^2)</th>
<th>(\bar{y}) mm</th>
<th>(\bar{z} A) mm(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQUARE</td>
<td>(\frac{3}{4} \pi \times 75^2 = 5625)</td>
<td>37.5</td>
<td>(210.938 \times 10^3)</td>
</tr>
<tr>
<td>QUARTER CIRCLE</td>
<td>(\frac{\pi}{4} \times (75)^2 - 44/128)</td>
<td>43.169</td>
<td>(-190.716 \times 10^3)</td>
</tr>
<tr>
<td></td>
<td>(120.14)</td>
<td></td>
<td>(20.223 \times 10^3)</td>
</tr>
</tbody>
</table>

\[\bar{z} A = \sum \bar{z} A \]

\[\bar{x} = \bar{y} = \bar{z} = 16.75 \text{ mm} \]

5.1 through 5.8 Locate the centroid of the plane area shown.

By Symmetry: \(\bar{y} = 0 \)

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>(A) mm(^2)</th>
<th>(\bar{z}) mm</th>
<th>(\bar{z} A) mm(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120-mm semicircle</td>
<td>(4 \times 120 \times \frac{1}{2})</td>
<td>60.93</td>
<td>-50.93</td>
</tr>
<tr>
<td>12-mm semicircle</td>
<td>(4 \times 72 \times \frac{1}{2})</td>
<td>-8.143</td>
<td>-30.538</td>
</tr>
<tr>
<td></td>
<td>(104.47 \times 10^3)</td>
<td></td>
<td>(-903.2 \times 10^3)</td>
</tr>
</tbody>
</table>

\[\bar{z} A = \sum \bar{z} A : \bar{z} \left(147.7 \times 10^3 \text{ mm}^3 \right) = -903.2 \times 10^3 \text{ mm}^3 \]

\[\bar{x} = -12.39 \text{ mm} \]

\[\bar{z} = -62.4 \text{ mm} \]
5.51 through 5.56 Determine the reactions at the beam supports for the given loading.

5.51 through 5.56 Determine the reactions at the beam supports for the given loading.

5.51 through 5.56 Determine the reactions at the beam supports for the given loading.

We first replace the given loading by the one shown below. Both loadings are equivalent since they are both defined by a linear relationship between load and distance and have the same values at the ends of the beam.

Each triangular loading is then replaced by a concentrated load.
Problem 5.54

5.51 through 5.56 Determine the reactions at the beam supports for the given loading.

\[R = \frac{1}{18}(800) = 14.400 \text{ lb} \]

\[\sum M_A = 0 \]

\[20B - 5(14400) = 0 \]

\[B = 3600 \text{ lb} \]

\[\sum F_y = 0 : A - 14400 + 3600 = 0 \]

\[A = 10800 \text{ lb} \]

Problem 5.55

5.51 through 5.56 Determine the reactions at the beam supports for the given loading.

\[R_1 = 200 \text{ lb/ft}(15 \text{ ft}) \]

\[R_1 = 3000 \text{ lb} \]

\[R_2 = \frac{1}{2}(200 \text{ lb/ft})(6 \text{ ft}) \]

\[R_2 = 600 \text{ lb} \]

\[\sum M_A = 0 : -3000 \text{ lb}(1.5 \text{ ft}) - 600 \text{ lb}(9 \text{ ft} + 2 \text{ ft}) + 200 \text{ lb}(15 \text{ ft}) = 0 \]

\[B = 740 \text{ lb} \]

\[A = 2860 \text{ lb} \]

\[\sum F_y = 0 : A + 740 \text{ lb} - 3000 \text{ lb} - 600 \text{ lb} = 0 \]

\[A = 2860 \text{ lb} \]