The final report must be written with at least six themes in mind. The Six themes must be selected per team. Contact me to select your themes. The following are a list of themes or adequacies:

Descriptive Adequacy

Descriptive adequacy refers to the ability to visualize objects in the models. Every defined object should be browse-able, allowing the user to view the structure of an object and its state at a particular point in time. This requires understanding and extracting meta-data about objects that will be used to build a visual model of objects and their configurations. This visual model is domain dependent -- that is, based on domain data and objects’ meta-data. Descriptive adequacy requires that all of the knowledge representation is visual, as follows:

- Visual models are structured to reflect natural structure of objects and their configurations
- All the visual knowledge (data & operations) in the visual model is localized
- Relationships among objects in the visual model are well-defined
- Interactions among objects in the visual model are limited and concise
- The visual model must transcend objects, and instead highlight crosscutting aspects.

Logical Adequacy

Logical adequacy refers to the representation tools that describe the framework components’ behavior, roles and responsibilities.

Synthesis Adequacy

Synthesis adequacy refers to an integrated problem resolution methodology, or built in trouble-shooting tools. Built-in trouble-shooting tools are very important in managing complex distributed systems, because there are typically many potential points of failure.

Analysis adequacy

Analysis adequacy refers to integrated validation and verification tools. With built in validation and verification, the process of maintenance and regression testing can be streamlined and the cost of validation and verification is minimized.

Blueprint Adequacy

Blueprint adequacy refers to the modeling features that provide for integrated system specifications. Integrated system specifications are important because they facilitate the extensibility of the system. An integrated blueprint for an enterprise framework should clearly identify the hot-spots and frozen-spots in the framework.

Epistemological Adequacy

Epistemological adequacy refers to tools for representing objects in the real world. There are two ways to view the world based on simplicity: (1) Perfect but simple view – the world is represented in this view as an ideal environment and (2) As-is, but complex and detailed view – the world is represented as an ultimate reality. There are also two ways to view an organization: 1) Flat and single view and 2) layered and multiple views. It is very obvious that most of modeling techniques, such as unified modeling language (UML) and object-modeling technique (OMT) model the world as an ideal environment and flat or single view of itself. Nevertheless, successful enterprise frameworks have made great leaps in representing objects in the real world and in providing the necessary tools to alter these objects as required by the business.
Notational Adequacy
Notational adequacy refers to the presentation constructs the impact the presentation tools have on the operation of the system as well as the ease of modification.

Procedural Adequacy
Procedural adequacy refers to recognition, and search capabilities.

Contractual Adequacy
Contractual adequacy refers to the client tools for representing the system behavior.

Scalable Adequacy
Scalable adequacy relates to the constructs and tools supporting partitioning, composition, security, and access control. Can your models be scalable in all directions?

Administrative adequacy
Administrative adequacy refers to the tools for modeling the deployed system’s performance, reliability and administrative characteristics and to the actual tools for administering the system. Administrative adequacy also considers the availability of install set builders, start and stop procedures or scripts, integrated database management capabilities, archiving, fail-over mechanisms, etc.

Understanding Adequacy
Understanding adequacy relates to be easy to understand.

Simplicity Adequacy
Simplicity adequacy relates to how simple your models will be.

Extensibility Adequacy
Extensibility adequacy relates to the degree of extensibility, adaptability, customizability, configurability of you’re your models.

Systematic Adequacy
Systematic adequacy relates to the systematic approaches that are utilized in modeling, such as bottom-up, top-down, and middle-out approaches. It also includes functional decomposition techniques, and the selection of the correct level of abstraction at each stage of analysis.

Behavioral Adequacy
Behavioral adequacy relates to the behavioral models that are concentrating on behavioral aspects of the system that you model at hand. It also includes accuracy of your behavioral models, such as scenarios, activity diagrams, sequence diagrams, interaction diagrams, state transition diagrams, etc.
Analytical Thinking Adequacy

Analytical thinking adequacy relates to the analytical thinking approaches and tools that are concentrating on analytical aspects of the system. It also includes the utilization of analysis patterns.