Actuators for Precision Machine Design

BJ Furman
03NOV05

Actuators

- Actuation principles:
 - Screws
 - Levers
 - Belts
 - Friction
 - Electromagnetic
 - Piezoelectric
 - Poisson
 - Electrostatic
Screws

- **P.O.S. with lapped three-jaw chuck**
- **Fine pitched screws**
 - 8-80
 - ¼-80 or ¼-127
 - How well do you think you can do by hand?
- **Suppliers**
 - Newport
 - Optosigma

Screws, cont.

- **Differential screws**
 - Two different pitches, P_1 and P_2
 - $1/P_{eq} = 1/P_1 - 1/P_2$
 - Very fine adjustments are easily achieved!
 - Ex. 1/4 – 28 and 10 – 32

Screws, cont.

- Micrometer heads
 - Includes scale or readout
 - Rotating or non-rotating
 - About 1 micron resolution
 - $50 for 25 mm stroke

- Integrated motor drives
 - 13 – 25 mm stroke
 - About 1 micron resolution
 - 5-125 micron/sec
 - <3 micron backlash
 - 0-60 °C
 - $700 for 13 mm stroke

Screws, cont.

- Manufacturers
 - Mitutoyo
 - Fowler
 - Tesa
 - Thorlabs
 - Boeckler
Leadscrews

◆ Thread/Nut type
 ▶ Acme or V with plain nut
 • Solid nut
 • Axially preloaded
 • Radially preloaded
 • Polymer
 ➢ Nylon
 ➢ Turcite
 ➢ Delrin (ask P. Denham at LBL)
 • Metal alloys
 ➢ Brass
 ➢ Bronze

Leadscrews, cont.

◆ Thread/Nut type
 ▶ Ground or rolled thread/ballnut
 • Rolled thread
 ➢ Less expensive - $10 - $20/in.
 ➢ Accuracy: ±0.00025 in./in.
 ➢ Leads: 0.2 in. – 2 in.
 ➢ 75 – 80% efficient
 • Ground thread
 ➢ More expensive - $50/in.
 ➢ Accuracy: ±0.0001 in./in.
 ➢ 85 – 90% efficient
 ➢ Smooth

Leadscrews, cont.

- Preloaded nuts
 - Tradeoff of stiffness and friction
 - Stiffness depends on preload due to Hertzian stresses

Levers

- Angular levers
 - Wedge-type lever
 - Make all of the same material if possible
 - $S/L \rightarrow S(1+\alpha dT)/L(1+\alpha dT)$
 - Ex. Zerodur
 - 1° wedge, 10 mm radius hemispheres for pivot, 50 pitch (0.5 mm lead) micrometer, gave 50 nrad (0.01 arc sec) angular adjustment

Smith and Chetwynd, p. 165
Friction Drives

- Wire and ribbon (band) drives
 - Ex. Pen plotter
 - Ex. Floppy disk drive actuator
- Capstan drive
 - Ex. LODTM x and z axis drive
 - 2 in. dia. drive roller, slightly “barreled”, supported at each end by 3.5 in. diameter oil bearings
 - 1 in. wide steel bar
 - DC torque motor directly coupled to drive wheel
 - 100 lb normal force between drive wheel and tool bar (assume 0.1 coeff. of friction \(\rightarrow 10 \) lb. max force)
Electromagnetic Actuators

◆ Stepper motors
 ❖ Advantages
 • Relatively inexpensive
 • Open loop possible
 • Relatively constant heat dissipation
 ❖ Disadvantages
 • Noise and vibration associated with discrete stepping
 • Relatively large heat dissipation
 • Relatively low speed (<3600 RPM)
 • Be careful of missing steps in open loop operation
 • Resolution will depend on basic step angle and drive electronics (microstepping is possible)

Electromagnetic Actuators

◆ DC Servo motors (brush-type or brushless)
 ❖ Advantages
 • High speed
 • High acceleration
 • Relatively “smooth” motion
 ❖ Disadvantages
 • Relatively higher cost
 • Need feedback sensors (encoder or tachometer, etc.)
Electromagnetic Actuators, cont.

- Voice-Coil Motors
- Linear Motors

Wafer Lithography Tool

Harmonic Drives

- Compact, negligible backlash “gearhead”

Piezoelectric Drives

- Piezo actuators

- Inchworm
- Picomotor
Magnetostriction Drives

- Etrema
 - http://etrema-usa.com

Electrostatic Drives

- Rocking beam force sensor

\[F = \frac{CV^2}{2d} \]
Elastic Actuator

Poisson’s Ratio Drive

\[\nu = -\frac{\varepsilon_{yy}}{\varepsilon_{xx}} \]
References

- Differential screw http://www.spie.org/app/publications/magazines/oerarchive/february/feb00/techgrp.html