Exercise 4-1 Temperature Monitor VI

Objective: To use a While Loop and a waveform chart to acquire and display data.

Complete the following steps to build a VI that measures temperature and displays it on the waveform chart.

Front Panel

1. Open a new VI.
2. Build the following front panel.

 ![Front Panel Image]

 a. Select the vertical toggle switch on the Controls»Boolean palette and place it on the front panel. You will use the switch to stop the acquisition.

 b. Type Power inside the label and click outside the label or click the Enter button on the toolbar, shown at left.

 ![Checkmark]

 c. Select a waveform chart on the Controls»Graph palette and place it on the front panel. The waveform chart will display the temperature in real time.

 d. Type Temperature History inside the label and click outside the label or click the Enter button.

 ![Alert]

 e. The waveform chart legend labels the plot Plot 0. Use the Labeling tool to triple-click Plot 0 in the chart legend, type Temp, and click outside the label or click the Enter button to relabel the legend.

 f. The temperature sensor measures room temperature. Use the Labeling tool to double-click 10.0 in the y-axis, type 90, and click outside the label or click the Enter button to rescale the chart.

 g. Change –10.0 in the y-axis to 70.

 h. Label the y-axis Temp (Deg F) and the x-axis Time (sec).
3. Select **Window»Show Diagram** to display the block diagram.

4. Enclose the two terminals in a While Loop, as shown in the following block diagram.

 ![Block Diagram](image)

 a. Select the While Loop on the **Functions»Structures** palette.
 b. Click and drag a selection rectangle around the two terminals.
 c. Use the Positioning tool to resize the loop, if necessary.

5. Select **Functions»Select a VI**, navigate to `c:\exercises\LVBasics I`, double-click the Thermometer VI, which you built in Exercise 3-2, and place the VI on the block diagram. This VI returns one temperature measurement from the temperature sensor.

6. Wire the block diagram objects as shown in the previous block diagram.

 ![Note](image)

 Note To measure temperature in Celsius, wire a Boolean constant located on the **Functions»Boolean** palette to the **Temp Scale** input of the Thermometer VI. Change the scales on charts and graphs in subsequent exercises to a range of 20 and 32 instead of 70 and 90.

7. Save the VI as `TemperatureMonitor.vi` because you will use this VI later in the course.

8. Display the front panel by clicking it or by selecting **Window»Show Panel**.

9. Use the Operating tool to click the vertical toggle switch and turn it to the ON position.

10. Run the VI.

 The section of the block diagram within the While Loop border, or subdiagram, executes until the specified condition is TRUE. For example, while the switch is on (TRUE), the Thermometer VI takes and returns a new measurement and displays it on the waveform chart.

11. Click the vertical toggle switch to stop the acquisition. The condition is FALSE, and the loop stops executing.
12. Format and customize the X and Y scales of the waveform chart.
 a. Right-click the chart and select **Y Scale»Formatting** from the shortcut menu. The following dialog box appears.

![Y Scale Formatting dialog box](image)

 b. Click the **Scale Style** icon and select different styles for the y-axis. You also can select different mapping modes, grid options, scaling factors, and formats and precisions.

 c. Select the options shown in the previous dialog box and click the **OK** button.

13. Right-click the waveform chart and select **Data Operations»Clear Chart** from the shortcut menu to clear the display buffer and reset the waveform chart. If the VI is running, you can select **Clear Chart** from the shortcut menu.

Changing the Mechanical Action of Boolean Switches

Each time you run the VI, you first must turn on the vertical toggle switch and then click the **Run** button. You can modify the mechanical action of Boolean controls by selecting one of the following options.

- **Switch When Pressed**—Changes the control value each time you click the control with the Operating tool. How often the VI reads the control does not affect this action.

- **Switch When Released**—Changes the control value only after you release the mouse button during a click within the graphical boundary of the control. How often the VI reads the control does not affect this action.
• **Switch Until Released**—Changes the control value when you click the control and retains the new value until you release the mouse button, at which time the control reverts to its original value. How often the VI reads the control does not affect this action.

• **Latch When Pressed**—Changes the control value when you click the control and retains the new value until the VI reads it once, at which time the control reverts to its default value. This action happens whether you continue to hold down the mouse button. This action is useful for stopping While Loops or having the VI perform an action only once each time you set the control.

• **Latch When Released**—Changes the control value only after you release the mouse button. When the VI reads the value once, the control reverts to the old value. This action guarantees at least one new value.

• **Latch Until Released**—Changes the control value when you click the control and retains the value until the VI reads the value once or until you release the mouse button, whichever occurs last.

14. Modify the vertical toggle switch so temperature is plotted on the graph each time you run the VI.

 a. Stop the VI if it is running.

 b. Use the Operating tool to click the vertical toggle switch and turn it to the ON position.

 c. Right-click the switch and select Data Operations » Make Current Value Default from the shortcut menu. This sets the ON position as the default value.

 d. Right-click the switch and select Mechanical Action » Latch When Pressed from the shortcut menu.

15. Run the VI.

16. Use the Operating tool to click the vertical switch to stop the acquisition. The switch changes to the OFF position and changes back to ON after the conditional terminal reads the value.
Adding Timing

When this VI runs, the While Loop executes as quickly as possible. Complete the following steps to take data at certain intervals, such as once every half-second, as shown in the following block diagram.

1. Place the Wait Until Next ms Multiple function located on the **Functions** » **Time & Dialog** palette. This function makes sure that each iteration occurs every half-second (500 ms).

2. Right-click the **millisecond multiple** input of the Wait Until Next ms Multiple function, select **Create» Constant** from the shortcut menu, type **500**, and press the <Enter> key. The numeric constant specifies a wait of 500 ms so the loop executes once every half-second.

3. On the front panel, right-click the chart and select **X Scale» Formatting** from the shortcut menu. Change the ΔX value to **0.5** because you added a 500 ms wait between loop iterations.

17. Save the VI, because you will use this VI later in the course.

18. Run the VI.

19. Try different values for the numeric constant and run the VI again.

20. Close the VI.

End of Exercise 4-1
C. Shift Registers

Use shift registers on For Loops and While Loops to transfer values from one loop iteration to the next. Create a shift register by right-clicking the left or right border of a loop and selecting Add Shift Register from the shortcut menu.

A shift register appears as a pair of terminals, shown at left, directly opposite each other on the vertical sides of the loop border. The right terminal contains an up arrow and stores data on the completion of an iteration. LabVIEW transfers the data connected to the right side of the register to the next iteration.

A shift register transfers any data type and automatically changes to the data type of the first object wired to the shift register. The data you wire to the terminals of each shift register must be the same type. You can create multiple shift registers on a structure, and you can have more than one left terminal to remember more than one previous value, as shown in the following illustration.

You can use shift registers to remember values from previous iterations. This technique is useful for averaging data points. To configure a shift register to carry over values to the next iteration, right-click the left terminal and select Add Element from the shortcut menu. For example, if you add two more elements to the left terminal, values from the last three iterations carry over to the next iteration.
Initializing Shift Registers

To initialize a shift register, wire any value from outside the loop to the left terminal. If you do not initialize the register, the loop uses the value written to the register when the loop last executed or the default value for the data type if the loop has never executed. For example, if the shift register data type is Boolean, the initial value is FALSE. Similarly, if the shift register data type is numeric, the initial value is 0.

Use a loop with an uninitialized shift register to run a VI repeatedly so that each time the VI runs, the initial output of the shift register is the last value from the previous execution. Leave the input to the left shift register terminal unwired for an uninitialized shift register to preserve state information between subsequent executions of a VI.
Lesson 4 Loops and Charts

Exercise 4-5 Temperature Running Average VI

Objective: To use shift registers to perform a running average.

Complete the following steps to modify the Temperature Monitor VI to average the last three temperature measurements and display the average on a waveform chart.

Front Panel

1. Open the Temperature Monitor VI, which you built in Exercise 4-1.
2. Select File»Save As and rename the VI Temperature Running Average.vi.

Block Diagram

3. Display the block diagram.
4. Right-click the right or left border of the While Loop and select Add Shift Register from the shortcut menu to create a shift register.
5. Right-click the left terminal of the shift register and select Add Element from the shortcut menu to add an element to the shift register.
6. Modify the block diagram as follows.

a. Press the <Ctrl> key while you click the Thermometer VI and drag it outside the While Loop to create a copy of the subVI.
 (MacOS) Press the <Option> key. (Sun) Press the <Meta> key. (Linux) Press the <Alt> key.

 The Thermometer VI returns one temperature measurement from the temperature sensor and initializes the left shift registers before the loop starts.
b. Place the Compound Arithmetic function located on the **Functions» Numeric** palette. This function returns the sum of the current temperature and the two previous temperature readings. Use the Positioning tool to resize the function to have three left terminals, shown at left.

c. Place the Divide function located on the **Functions»Numeric** palette. This function returns the average of the last three temperature readings.

d. Right-click the y terminal of the Divide function, select **Create» Constant**, type 3, and press the <Enter> key.

e. Use the Labeling tool to double-click the numeric constant wired to the Wait Until Next ms Multiple function, type 500, and press the <Enter> key.

7. Save the VI because you will use this VI later in the course.

8. Run the VI.

During each iteration of the While Loop, the Thermometer VI takes one temperature measurement. The VI adds this value to the last two measurements stored in the left terminals of the shift register. The VI divides the result by three to find the average of the three measurements, the current measurement plus the previous two. The VI displays the average on the waveform chart. Notice that the VI initializes the shift register with a temperature measurement.

9. Place the Bundle function located on the **Functions»Cluster** palette to display both the average and the current temperature measurement on the same waveform chart. This function bundles the average and current temperature for plotting on the waveform chart.

10. Save and run the VI. The VI displays two plots on the waveform chart. The plots are overlaid. That is, they share the same vertical scale.
Customizing Charts

Complete the following steps to customize the waveform chart as shown in the following front panel. You can display a plot legend, a scale legend, a graph palette, a digital display, a scrollbar, and a buffer. By default, a waveform chart displays the plot legend.

11. Customize the y-axis.

 a. Use the Labeling tool to double-click 70.0 in the y-axis, type 75.0, and press the <Enter> key.

 b. Use the Labeling tool to double-click the second number from the bottom on the y-axis, type 80.0, and press the <Enter> key. This number determines the numerical spacing of the y-axis divisions.

 For example, if the number above 75.0 is 77.5, indicating a y-axis division of 2.5, changing the 77.5 to 80.0 reformats the y-axis to multiples of 5.0 (75.0, 80.0, 85.0, and so on).

Note The waveform chart size has a direct effect on the display of axis scales. Increase the waveform chart size if you encounter problems while customizing the axis.
12. Right-click the waveform chart and select **Visible Items ➤ Scale Legend** from the shortcut menu to display the scale legend, as shown in the following illustration. You can place the scale legend anywhere on the front panel.

![Scale Legend Illustration](image)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-axis</td>
<td>Y-axis</td>
<td>Scale labels</td>
<td>Scale Lock button</td>
<td>Autoscale button</td>
<td>Scale Format button</td>
</tr>
</tbody>
</table>

13. Use the scale legend to customize each axis.
 a. Make sure the **Autoscale** LED is green and that the **Lock Autoscale** button appears locked so the y-axis adjusts the minimum and maximum values to fit the data in the chart.
 b. Click the **Scale Format** button to change the format, precision, mapping mode, scale visibility, and grid options for each axis.

14. Use the plot legend to customize the plots.
 a. Use the Positioning tool to resize the plot legend to include two plots.
 b. Use the Labeling tool to change **Temp** to **Running Avg** and to change **Plot 1** to **Current Temp**. If the text does not fit, use the Positioning tool to resize the plot legend.
 c. Right-click the plot in the plot legend to set the line and point styles and the color of the plot background or traces.
15. Right-click the waveform chart and select **Visible Items** » **Graph Palette** from the shortcut menu to display the graph palette, as shown in the following illustration. You can place the graph palette anywhere on the front panel.

16. Save and run the VI. While the VI runs, use the buttons in the scale legend and graph palette to modify the waveform chart.

Note If you modify the axes labels, the display might become larger than the maximum size that the VI can correctly present.

17. Use the Operating tool to click the **Power** switch and stop the VI.

18. Save and close the VI.

End of Exercise 4-5
D. For Loops

A For Loop, shown at left, executes a subdiagram a set number of times. The For Loop is located on the Functions Structures palette. The value in the count terminal (an input terminal), shown at left, indicates how many times to repeat the subdiagram. The iteration terminal (an output terminal), shown at left, contains the number of completed iterations. The iteration count always starts at zero. During the first iteration, the iteration terminal returns 0.

The For Loop differs from the While Loop in that the For Loop executes a set number of times. A While Loop stops executing the subdiagram only if the value at the conditional terminal exists.

The following For Loop generates 100 random numbers and displays the points on a waveform chart.

Numeric Conversion

LabVIEW can represent numeric data types as integers (byte, word, or long), floating-point numerics (single, double, or extended precision), or complex numerics (single, double, or extended precision). When you wire two or more numeric inputs of different representations to a function, the function usually returns output in the larger or wider format. The functions coerce the smaller representations to the widest representation before execution, and LabVIEW places a coercion dot on the terminal where the conversion takes place.
For example, the For Loop count terminal is long integer. If you wire a double-precision, floating-point numeric to the count terminal, LabVIEW converts the numeric to a long integer. A gray coercion dot appears on the count terminal of the first For Loop, as shown in the following illustration.

![Diagram showing conversion from double-precision floating-point to long integer]

To change the representation of a numeric object, right-click the object and select **Representation** from the shortcut menu. Select the data type that best represents your data.

When LabVIEW converts floating-point numerics to integers, it rounds to the nearest integer. LabVIEW rounds \(x.5 \) to the nearest even integer. For example, LabVIEW rounds 2.5 to 2 and 3.5 to 4.
Exercise 4-6 Random Average VI

Objective: To build a VI that displays two plots, a random plot and a running average of the last four points, on a waveform chart in sweep update mode.

1. Build this VI, using the following tips:
 - Use a For Loop \((n = 200)\) instead of a While Loop. The sweep chart should be similar to the following chart.

![Waveform Chart](image)

 - Use a shift register with three left terminals to average the last four data points.
 - Use the Random Number (0-1) function located on the \textit{Functions} » \textit{Numeric} palette to generate the data.
 - Use the Bundle function located on the \textit{Functions} » \textit{Cluster} palette to group the random data with the averaged data before plotting.

2. Save the VI and name it RandomAverage.vi.
3. Close the VI.

End of Exercise 4-6
Summary, Tips, and Tricks

- Use structures on the block diagram to repeat blocks of code and to execute code conditionally or in a specific order.
- The While Loop executes the subdiagram until the conditional terminal receives a specific Boolean value. By default, the While Loop executes its subdiagram until the conditional terminal receives a FALSE value.
- The For Loop executes a subdiagram a set number of times.
- You create loops by using the cursor to drag a selection rectangle around the section of the block diagram you want to repeat or by dragging and dropping block diagram objects inside the loop.
- The Wait Until Next ms Multiple function makes sure that each iteration occurs at certain intervals. Use this function to add timing to loops.
- The waveform chart is a special numeric indicator that displays one or more plots.
- The waveform chart has the following three update modes:
 - A strip chart shows running data continuously scrolling from left to right across the chart.
 - A scope chart shows one item of data, such as a pulse or wave, scrolling partway across the chart from left to the right.
 - A sweep display is similar to an EKG display. A sweep works similarly to a scope except it shows the old data on the right and the new data on the left separated by a vertical line.
- Use shift registers on For Loops and While Loops to transfer values from one loop iteration to the next.
- Create a shift register by right-clicking the left or right border of a loop and selecting Add Shift Register from the shortcut menu.
- To configure a shift register to carry over values to the next iteration, right-click the left terminal and select Add Element from the shortcut menu.
- Right-click a waveform chart or its components to set attributes of the chart and its plots.
- Coercion dots appear where LabVIEW coerces a numeric representation of one terminal to match the numeric representation of another terminal.