Chapter 2
Reciprocal Lattice

Phys 175A
Dr. Ray Kwok
SJSU
Crystal Lattice

- Periodic \(f(r + T) = f(r) \) for any observable functions such as electronic density, electric potential, etc. which means they are all periodic functions because of the translational properties of the lattice vectors.
Fourier Transform

- Fourier series (1D): \(f(r) = \sum_n A_n e^{i2\pi nr/a} \)

 where the period is \(a \).

 such that \(f(r + ua) = f(r) \); \(u \) is an integer.

- Or write \(f(r) \equiv \sum_G A_G e^{iGr} \)

 where \(G = 2\pi n/a \) (for 1D lattice)

 and \(A_G = (1/a) \int_{\text{cell}} f(r) e^{-iGr} \, dr \)
1D Translational Invariance

\[f(r + T) = \sum_G A_G e^{iG(r+T)} = \sum_G A_G e^{iGr} e^{iGT} \]
\[= f(r) = \sum_G A_G e^{iGr} \]

i.e. \[e^{iGT} = 1 \]

For example, if \(T = ua \) (1D), then \(GT = 2\pi un = 2\pi \cdot \text{(integer)} \) and \(e^{iGT} = 1 \).
3D Translational Invariance

- For 3D lattice, \(e^{iG \cdot T} = 1 \)

 and \(T = u_1a_1 + u_2a_2 + u_3a_3 \) is the translational vector or the lattice vector

- Define “reciprocal primitive vectors”

- \(b_1 = (2\pi/V) a_2 \times a_3 \)
- \(b_2 = (2\pi/V) a_3 \times a_1 \)
- \(b_3 = (2\pi/V) a_1 \times a_2 \)

 where \(V \) is the volume of the primitive lattice cell
 \(V = |a_1 \cdot a_2 \times a_3| \), such that \(b_i \cdot a_j = 2\pi\delta_{ij} \)
 and \(\delta_{ij} \) is the kronecker delta function.

 Note: \(\{a\}'s \) don’t have to be orthogonal.
Reciprocal Lattice Vectors

Define \(\mathbf{G} = v_1 \mathbf{b}_1 + v_2 \mathbf{b}_2 + v_3 \mathbf{b}_3 \)
where the \(v \)'s are integers so that
so that
\[\mathbf{G} \cdot \mathbf{T} = 2\pi (u_1 v_1 + u_2 v_2 + u_3 v_3) = 2\pi \cdot \text{(integer)} \]
[because \(\mathbf{b}_i \cdot \mathbf{a}_j = 2\pi \delta_{ij} \)]
and \(e^{i \mathbf{G} \cdot \mathbf{T}} = 1 \)

In other words, because of the translational invariance property of the crystal, there exist a set of vector \(\mathbf{G} \) such that \(\mathbf{G} \cdot \mathbf{T} = 2\pi \cdot \text{(integer)} \). This set of vector defines another set of lattice point in the Reciprocal Space.
Reciprocal Vector Space

- G has a unit of 1/length. Similar to the wave-vector k in the plane wave expression $e^{i\mathbf{k} \cdot \mathbf{r}}$.
- G has a meaning in Fourier transform, k-space, or momentum space.
- It defines a set of lattice points in the k-space.
Direct and Reciprocal Lattice

- For every crystal, there is a set of space lattice (crystal lattice) – location of lattice points in real space where atoms and molecules are.
- There is also a set of reciprocal lattice in the momentum space (k-space) – something we see in diffraction measurement. However, there is no physical object present at the reciprocal lattice sites.
Light Microscopy vs X-ray Crystallography

\[\lambda \sim 500 \text{ nm} \quad \lambda \sim 0.1 \text{ nm} \]

(a) Enlarged image
see real space

(b) Electron density map
see reciprocal space
Tunneling Microscope vs X-Ray Diffraction

“see” Direct Lattice (surface only)

Reciprocal Lattice (volume)
Reciprocal nature of diffraction pattern

Bragg’s law: \[2d \sin \theta = n \lambda \]

\[d \propto \frac{1}{\sin \theta} \]

Diffraction maximum can be specified by the Miller indices \([hkl]\)
What do we learn from x-ray?

- Lattice parameters (Space Group)
- Symmetry (Point Group)
- Miller Index (h,k,l) for each point
- Intensity (square of structural factor) of each reflection
Properties of G – reciprocal lattice

- Each G is normal to a lattice plane in real space.
- $G \cdot T = 2\pi n$. For a fixed G and n, there are many T vectors satisfied this equation. But they all lie on the plane perpendicular to G.

Diagram:

- Crystal plane
- G
- T
Distance between planes $= 2\pi/G$

- If G has no common factor (prime #), then the distance between crystal plane perpendicular to the G is $2\pi/G$.
- $d = T \cos \theta = 2\pi n/G$
- $d' = T' \cos \theta' = 2\pi (n+1)/G$
- Separation of planes $= d' - d = 2\pi/G$
- and G must be the smallest reciprocal lattice for a given direction in k-space (prime #).
Small G dominates

- The larger the G, the closer the crystal plane, and less atoms on the plane.
- For example, in sc, separation of (100) is a, of (110) is $a/\sqrt{2} = 0.71a$
Volume of the reciprocal cell

If the volume of a unit cell of the direct lattice is V, then the volume of a unit cell of the reciprocal lattice is $(2\pi)^D/V$ where D is the dimension of the lattice, usually 3.

3D:

$$V_g = |\mathbf{b}_1 \cdot \mathbf{b}_2 \times \mathbf{b}_3|$$

$$= (2\pi/V)^3 \left\{ (\mathbf{a}_2 \times \mathbf{a}_3) \cdot (\mathbf{a}_3 \times \mathbf{a}_1) \times (\mathbf{a}_1 \times \mathbf{a}_2) \right\}$$

$$= (2\pi/V)^3 \left\{ (\mathbf{a}_2 \times \mathbf{a}_3) \cdot \left[\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2) \right] \mathbf{a}_1 - \left[\mathbf{a}_1 \cdot (\mathbf{a}_1 \times \mathbf{a}_2) \right] \mathbf{a}_3 \right\}$$

$$= (2\pi/V)^3 \left\{ (\mathbf{a}_2 \times \mathbf{a}_3) \cdot \left[\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2) \right] \mathbf{a}_1 \right\}$$

$$= (2\pi/V)^3 \left\{ (\mathbf{a}_2 \times \mathbf{a}_3) \cdot V \mathbf{a}_1 \right\}$$

$$= (2\pi)^3/V^2 \left\{ (\mathbf{a}_2 \times \mathbf{a}_3) \cdot \mathbf{a}_1 \right\}$$

$$= (2\pi)^3/V$$
Reciprocal of Reciprocal

- The direct lattice is the reciprocal of its own reciprocal lattice
- \(\mathbf{b}_1 = (2\pi/V) \mathbf{a}_2 \times \mathbf{a}_3 \)
- \(\mathbf{b}_2 = (2\pi/V) \mathbf{a}_3 \times \mathbf{a}_1 \)
- \(\mathbf{b}_3 = (2\pi/V) \mathbf{a}_1 \times \mathbf{a}_2 \)
- reciprocal \(\mathbf{c}_1 = (2\pi/V_g) \mathbf{b}_2 \times \mathbf{b}_3 \)
 \[= \frac{V}{(2\pi)^2} \left(\frac{2\pi}{V} \right)^2 (\mathbf{a}_3 \times \mathbf{a}_1) \times (\mathbf{a}_1 \times \mathbf{a}_2)\]
 \[= (1/V) \{ [\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)] \mathbf{a}_1 - [\mathbf{a}_1 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)] \mathbf{a}_3 \}\]
 \[= (1/V) \{ [\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)] \mathbf{a}_1 \}\]
 \[= \mathbf{a}_1 \]
The Wigner-Seitz cell of the reciprocal lattice is called the Brillouin Zone.
Cubic – reciprocal lattice

<table>
<thead>
<tr>
<th>Crystal Structure</th>
<th>Direct Lattice</th>
<th>Reciprocal Lattice</th>
<th>Volume (k-space)</th>
</tr>
</thead>
</table>
| SC | \[
\begin{align*}
\vec{a}_1 &= a\hat{x} \\
\vec{a}_2 &= a\hat{y} \\
\vec{a}_3 &= a\hat{z}
\end{align*}
\] | \[
\begin{align*}
\vec{b}_1 &= (2\pi/a)\hat{x} \\
\vec{b}_2 &= (2\pi/a)\hat{y} \\
\vec{b}_3 &= (2\pi/a)\hat{z}
\end{align*}
\] | \[(2\pi/a)^3\] |
| FCC | \[
\begin{align*}
\vec{a}_1 &= \frac{1}{2}a(\hat{x} + \hat{y}) \\
\vec{a}_2 &= \frac{1}{2}a(\hat{y} + \hat{z}) \\
\vec{a}_3 &= \frac{1}{2}a(\hat{z} + \hat{x})
\end{align*}
\] | \[
\begin{align*}
\vec{b}_1 &= \frac{2\pi}{a}(\hat{x} + \hat{y} - \hat{z}) \\
\vec{b}_2 &= \frac{2\pi}{a}(-\hat{x} + \hat{y} + \hat{z}) \\
\vec{b}_3 &= \frac{2\pi}{a}(\hat{x} - \hat{y} + \hat{z})
\end{align*}
\] | \[4(2\pi/a)^3\] |
| BCC | \[
\begin{align*}
\vec{a}_1 &= \frac{1}{2}a(\hat{x} + \hat{y} - \hat{z}) \\
\vec{a}_2 &= \frac{1}{2}a(-\hat{x} + \hat{y} + \hat{z}) \\
\vec{a}_3 &= \frac{1}{2}a(\hat{x} - \hat{y} + \hat{z})
\end{align*}
\] | \[
\begin{align*}
\vec{b}_1 &= \frac{2\pi}{a}(\hat{x} + \hat{y}) \\
\vec{b}_2 &= \frac{2\pi}{a}(\hat{y} + \hat{z}) \\
\vec{b}_3 &= \frac{2\pi}{a}(\hat{z} + \hat{x})
\end{align*}
\] | \[2(2\pi/a)^3\] |
Hexagonal - homework

Derive the reciprocal vectors for a 2D hexagonal lattice.

Real space

Reciprocal space

Real and reciprocal lattices appear to be rotated from one another!
1D - Reciprocal Lattice

\[\mathbf{b}_i \cdot \mathbf{a}_j = 2\pi \delta_{ij} \text{ means } \mathbf{b} \cdot \mathbf{a} = 2\pi \]

so \(\mathbf{b} = \frac{2\pi}{a} \) along the same direction

First BZ

Direct Lattice

Reciprocal Lattice
2D Reciprocal Lattice

Direct Lattice

Reciprocal Lattice

\[\vec{a}_1 = a_1 \hat{x} \]
\[\vec{a}_2 = a_2 \hat{y} \]

\[\vec{b}_1 = \frac{2\pi}{a_1} \hat{x} \]
\[\vec{b}_2 = \frac{2\pi}{a_2} \hat{y} \]

\[\vec{b}_i \cdot \vec{a}_j = 2\pi \delta_{ij} \]
\[\vec{b}_1 \cdot \vec{a}_1 = 2\pi; \quad \vec{b}_1 \cdot \vec{a}_2 = 0 \]
\[\vec{b}_2 \cdot \vec{a}_1 = 0; \quad \vec{b}_2 \cdot \vec{a}_2 = 2\pi \]
Diffraction in quantum mechanic description: (Born approx)

The transitional amplitude to scatter from k-state to k’-state = $M_{kk'} = \langle k'|V(r)|k \rangle = \int \Psi^*(r) V(r) \Psi(r) \, dr$

$\Psi(r) = e^{ik \cdot r}$ is the plane wave (think of the Bragg scattering plane incident & diffracted waves)

In Fourier series, $V(r) = \sum V_G e^{iG \cdot r}$ (with the translational property of the lattice)

$M_{kk'} = \sum V_G \int e^{i(G + k - k') \cdot r} \, dr = \sum V_G \delta(G - \Delta k)$

= V_G if $G = \Delta k$, $M_{kk'} = 0$ otherwise.

So the condition for Bragg scattering becomes $G = \Delta k = k' - k$
For elastic scattering, frequency $\omega = ck$ is unchanged. Speed of light is the same before & after scattering off the target, so $|k| = |k'|$.

Write $k + G = k'$ and square both sides gives $2k \cdot G + G^2 = 0$,

$$2k \cdot G = 2kG \cos \alpha = -G^2$$
$$-2k \cos \beta = -G$$
$$2k \sin \theta = G$$
$$2(2\pi/\lambda) \sin \theta = 2\pi n/d$$
$$2d \sin \theta = n\lambda$$

which is the Bragg condition.
X-ray data

Calcite - France Stone
Random/Backpack
March 24, 1993
40 kv, 30 ma
0.005 deg steps; 0.25 sec/step
15 pt. filter

D: 39.37 deg
2.287 ang

E:

C: 23.04 deg
3.86 ang

A:

B:
Bragg Conditions

\[2 \vec{k} \cdot \vec{G} + G^2 = 0 \]
\[|\vec{k} \cdot \vec{G}| = G/2 \]

Can use different \(k \) to probe the same \(G \). Different circles, different \(k \) and angles.

Or similarly, all \(k \) end on the perpendicular bisecting plane of \(G \) would give Bragg diffraction. (BZ !!)
Laue Equations

- \(\mathbf{G} = \Delta \mathbf{k} = \nu_1 \mathbf{b}_1 + \nu_2 \mathbf{b}_2 + \nu_3 \mathbf{b}_3 \)
- \(\mathbf{b}_i \cdot \mathbf{a}_j = 2\pi \delta_{ij} \)
- \(\mathbf{a}_j \cdot \Delta \mathbf{k} = 2\pi \nu_j \) define sets of cones around \(\{\mathbf{a}\} \)

Allowed diffraction when the cones intersect. Note: Cone height is discrete, not a continue spectrum. Zero height is allowed) - different integers \(\nu \)'s.
Ewald Sphere

A sphere with radius k. Any point lands on the surface of the sphere is an allowed G value, i.e. diffraction occurs at that particular angle & k. In principle, it can map out the whole reciprocal lattice using different k.

![Ewald Sphere Diagram](image)
Example

Note:
\[a_1 \cdot b_2 = 0 \]
\[a_2 \cdot b_1 = 0 \]

Here \(\{a\} \) are the direct lattice vectors & \(\{b\} \) are the reciprocal lattice vectors.
RECIPROCAL LATTICE

REAL LATTICE

length = 1/d_{0,1}

(0,0) planes
Note: length is longer than (0,1) since spacing between (1,1) planes is smaller.
real lattice

\(\mathbf{a}_1 \)
\(\mathbf{a}_2 \)

reciprocal lattice

\(\mathbf{b}_1 \)
\(\mathbf{b}_2 \)

length = \(\frac{1}{d_{2,1}} \)

(0,0)

(2,1) planes
RECIProCAL LATTICE

REAL LATTICE

length = 1/d_{3,1}

(3,1) planes
RECIPIROCAL LATTICE

REAL LATTICE

(0,0) planes
(1,1) planes
(2,1) planes
(3,1) planes
REAL LATTICE

RECIPIROCAL LATTICE

with basis, for example
RECI PROCAL LATTICE

REAL LATTICE

length = 1/d_{2,2}

(2,2) planes
How do we orient the crystal to observe diffraction from the (0,1) reflection?
Bragg condition-- upper beam has to be an integral number of wavelengths from the lower beam for constructive interference.
$n\lambda = 2d \sin \theta$
(2,1) planes
Interpretation of the observed diffraction pattern

The reciprocal lattice can be constructed.
Diffraction by a monatomic lattice

Bragg condition:
In phase to get constructive interference (+ + + +)
Zero reflection otherwise (+ - + - + -)

From here we got:
\[\mathbf{G} = \Delta \mathbf{k} // \mathbf{d} \]
\[G = 2\pi/d \]
Bragg diffraction
Laude Equations
Construction of reciprocal lattice from EACH diffraction observed
i.e. each reciprocal lattice point gives a spot on the screen
Diffraction by a lattice with a Basis

For diatomic lattice (assume identical atoms) ALL in phase to get max amplitude (+ + + +)
Zero amplitude if the reflection from the basis cancel (− + − +).
Likewise, if the basis reflections are in phase, but the lattice reflections are out-of-phase, amplitude still cancels (+ + − −)
i.e. to get max Bragg scattering, both lattice reflections and basis reflections should be in phase. Amplitude is less if they are partially in phase or out-of-phase.

With multiple atoms, or non-identical atoms, scattering amplitude would not be uniform. There are partial cancellations.
The resulting reciprocal lattice of the direct lattice would be modified.
Fourier Analysis of a Basis

- Scattering amplitude

\[M_{kk'} = <k'|V(r)|k> = \int \Psi^*(r) V(r) \Psi(r) \, dr \]

where \(\Psi(r) = e^{i k \cdot r} \)

\[V(r) = \sum_j V(r-r_j) = \sum G,j \, V_G \, e^{i G \cdot (r-r_j)} \]

\(r_j \) is the position of the \(j^{\text{th}} \) atom in the unit cell.

- \(M_{kk'} = \sum V_G \int e^{i (G + k - k') \cdot (r-r_j)} \, dr \]

\[= \sum_G \sum_j e^{-i G \cdot r_j} \left[V_G \int e^{i (G + k - k') \cdot r} \, dr \right] \]

Define \(S_G = \sum_j e^{-i G \cdot r_j} f_j \) the Structure Factor and \(f_j \) is the Atomic Form Factor such that \(M_{kk'} \propto S_G \)
Now if we specify \mathbf{G} and \mathbf{r}_j as
$$
\mathbf{G} = \nu_1 \mathbf{b}_1 + \nu_2 \mathbf{b}_2 + \nu_3 \mathbf{b}_3 \quad \text{and} \quad \mathbf{r}_j = x_j \mathbf{a}_1 + y_j \mathbf{a}_2 + z_j \mathbf{a}_3
$$
we get:
$$
S_G = \sum_{j=1}^{s} f_j e^{-2\pi i (x_j \nu_1 + y_j \nu_2 + z_j \nu_3)}
$$

Note that S_G can be complex, because the scattering intensity involves the magnitude squared of S_G.

The evaluation of atomic form factor is complicated but for spherically-symmetric electron density, it can be written as (Kittel)
$$
f_j = 4\pi \int_{0}^{\infty} n_j(r) r^2 \frac{\sin(Gr)}{Gr} dr
$$
Example – bcc

primitive cell
bcc
$V = \frac{a^3}{2}$

reciprocal cell
fcc
$V = \frac{(4\pi/a)^3}{4}$
* see primitive vectors

• lattice cell sc
• w/ 2-pts basis
• $V = a^3$

• reciprocal lattice sc
• $V = (2\pi/a)^3$ [8x smaller than the cube $(4\pi/a)^3$]
• extra lattice points
• extra diffraction spots?
For a BCC lattice, \(r_j = (000) \) and \((\frac{1}{2} \frac{1}{2} \frac{1}{2})\). The structure factor is then:

\[
S_G = \left[1 + e^{-\pi i (v_1 + v_2 + v_3)}\right]f
\]

The structure factor is maximum \(S_G = 2f \) when the sum of the indices is even, i.e. \(v_1 + v_2 + v_3 = 2n \).

The structure factor is \(S_G = 0 \) when the sum of the indices is odd, i.e. \(v_1 + v_2 + v_3 = 2n + 1 \).

The only \(G \) show up in diffraction pattern are the ones fit the fcc lattice points.

Same physical measurement regardless how the cell was defined.
Example – fcc

- **Primitive cell**
 - fcc
 - $V = \frac{a^3}{4}$

- **Reciprocal cell**
 - bcc
 - $V = (4\pi/a)^3/2$
 * see primitive vectors

- **Lattice cell sc**
 - w/ 4-pts basis
 - $V = a^3$

- **Reciprocal lattice sc**
 - $V = (2\pi/a)^3$ [8x smaller than the cube $(4\pi/a)^3$]
 - extra lattice points
 - extra diffraction spots?
For a FCC lattice, we have four atoms per init cell located at (000), (0 ½ ½), (½ 0 ½) and (½ ½ 0). The structure factor is then:

\[S_G = \left[1 + e^{-\pi i (v_1 + v_2)} + e^{-\pi i (v_1 + v_3)} + e^{-\pi i (v_2 + v_3)} \right] f \]

When all indices are even or odd, then \(S_G = 4f \).
When the indices are partially even and partially odd, then \(S_G = 0 \).

The only G show up in diffraction pattern are the ones fit the bcc lattice points.
Same physical measurement regardless how the cell was defined.
Homework

- Problem # 1, 2
- Problem # 5, 6, 7