Assessment of Distributed Object Middleware

Rod Fatoohi
San Jose State U. & NASA Ames Research Center

ESTO/ESDIS Technology Transfer Workshop
June 5, 2000, Greenbelt, Maryland
Contributors

- Tom Lasinski, ARC
- David McNab, ARC
- Vandana Gunwani, SJ SU
- Qi Wang, SJ SU
- Charlton Zheng, SJ SU
- Sandeep Gawai, SJ SU
- Ritika Maheshwari, SJ SU
- Daniel Jensen, SJ SU
- Shakil Ahmed, SJ SU
Background

Sept ’98 (15 mos): Joint project GSFC/ARC/SJ SU - ECS Distributed Object Middleware & Alternative Technology
 - *Nov ’98 (18 mos): grant to SJ SU – Assessment of Distributed Object Middleware*

Objective: Technology assessment & performance evaluation of alternative technology to OODCE within EOSDIS
Tasks

- Develop test environment
- Examine ECS Middleware
- Analyze Subscription Server & Design alternative
- Investigate alternatives to OODCE/DCE interface
- Investigate alternatives to CDS - using LDAP
- Evaluate CORBA/DCOM bridges
- Evaluate CORBA/DCE bridge

http://www.engr.sjsu.edu/fatoohi/eosdis
Develop test environment

- Acquired & installed DCE, OO-DCE, CORBA, ECS IDLs, … at SJ SU

- Lab has Solaris (UltraSPARC II), NT (Pentium II), AIX (RS6000) machines
Examine ECS Middleware
(D. McNab, R. Fatoohi, T. Lasinski)

- Observations on ECS:
 - Problems w/ DCE: non O-O, complexity, …
 - Lack of abstraction model
 - Lack of COTS usage

- Future Directions:
 - Hard to extract DCE due to crosstalk & abstraction violation
 - Replacement w/ non COTS component
 - Replacement w/ COTS – CORBA

http://www.engr.sjsu.edu/fatoohi/eosdis/mcnab.html
Analyze Subscription Server & Design Alternative
(R. Maheshwari & R. Fatoohi)

- Analyzed ECS Subscription Server
- Designed & implemented subscription server based on OMG Notification Service
 - Uses Structured Push Style communication
- Tested for Auction Alert System

http://www.engr.sjsu.edu/fatoohi/eosdis/Subscription.pdf
Main Features of Designed Subscription Server

- Push Type Communication Model
- Structured Events
- Event Forwarding Filters
- QoS properties: Connection Reliability & Event Reliability
- Admin properties: MaximumSuppliers, MaximumConsumers & MaximumQueueLength
- In memory persistent objects
- Ability to restore state
- An advertiser which advertises offers made by suppliers & subscriptions made by consumers
Subscription Server Architecture

EVENT FLOW
FILTER OBJECT
DATABASE OBJECT
Investigate alternatives to CDS
(S. Ahmed & R. Fatoohi)

- Evaluated Triangulum bridging products that allow replacing CDS w/ LDAP
- Using LDAP as generic Naming & Directory Service to replace others: CORBA Naming, RMI Registry & CDS
 - Develop CDS Service Provider Interface API as plug-in to JNDI 1.2 API
 - Testing using online bill payment system
 http://www engr sjsu edu/fatoohi/eosdis/jndi_ldap_java.html
DCOM/CORBA Bridges
(Q. Wang, C. Zheng & R. Fatoohi)

- 2 bridges: ObjectBridge by Visual Edge & OrbixCOMet by IONA
 - Both bi-directional & dynamic
- NT 4.0 w/ Pentium II 233 MHz, 128 MB
- C++(both), Java & Applet (ObjectBridge)
 - Same language for both client & server
- Count: Invokes method to increment variable 1000 times & measures average response time
- C: Client, S: Server, B: Bridge; X, Y, Z: 3 machines; all results in milliseconds.
ObjectBridge C++ Client & Server

<table>
<thead>
<tr>
<th></th>
<th>CORBA Server</th>
<th>DCOM Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C & S on X</td>
<td>0.397</td>
<td>C, B & S on X: 1.525</td>
</tr>
<tr>
<td>C on X, S on Y</td>
<td>0.991</td>
<td>C & B on X, S on Y: 1.604</td>
</tr>
<tr>
<td>C on X, B & S on Y: 0.841</td>
<td></td>
<td>C on X, B & S on Y: 1.702</td>
</tr>
<tr>
<td>D COM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C & B on X, S on Y: 1.141</td>
<td></td>
<td>C on X, S on Z: 1.834</td>
</tr>
<tr>
<td>C on X, B & S on Y: 1.082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C on X, B on Y, S on Z: 1.191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DCOM/CORBA Bridges: Observations

- ObjectBridge is faster than OrbixCOMet
- Each bridge adds ~ 0.5 ms overhead
- In general, C++ outperforms Java
- Bridge location impact is insignificant
- Java Applet is slow

http://www.engr.sjsu.edu/fatoohi/Bridge.pdf
DCE/CORBA Bridge
(V. Gunwani & R. Fatoohi)

- DCE-CORBA bridge by Inprise
- Unidirectional: CORBA client -> DCE server
- Acts as CORBA server (<= CORBA client) & DCE client (=> DCE server)
- Supports VisiBroker ORB only
- Generates CORBA IDL from DCE IDL
- Solaris 2.5, UltraSPARC IiI 333 MHz, 128 MB
- Client language: C++, Java, Java Applet
DCE-CORBA Bridge

<table>
<thead>
<tr>
<th></th>
<th>DCE Server</th>
<th></th>
<th>CORBA Server</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DCE C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C, B & S on X: 0.698</td>
<td>C on X, S on Y: 1.089</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C++</td>
<td>C, B & S on X: 7.832</td>
<td></td>
<td>C & S (C++) on X: 0.583</td>
<td></td>
</tr>
<tr>
<td>CORBA C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, B & S on X:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C on X, S on Y:</td>
<td>C & B on X, S on Y: 7.996</td>
<td>C on X, S (C++) on X: 0.583</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Java</td>
<td>C, B & S on X: 8.334</td>
<td></td>
<td>C & S (Java) on X: 1.472</td>
<td></td>
</tr>
<tr>
<td>CORBA C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, B & S on X:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C on X, S on Y:</td>
<td>C & B on X, S on Y: 8.271</td>
<td>C on X, S (Java) on X: 1.472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C on X, B & S on Y:</td>
<td>C on X, B & S on Y: 7.569</td>
<td>C on X, S (Java) on Y: 1.401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Java applet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORBA C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, B & S on X:</td>
<td>C, B & S on X: 11.326</td>
<td>C & S (Java) on X: 4.373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C & B on X, S on Y:</td>
<td>C & B on X, S on Y: 10.909</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C on X, B & S on Y:</td>
<td>C on X, B & S on Y: 28.161</td>
<td>C on X, S (Java) on Y: 25.807</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C on X, B on Y, S on Z:</td>
<td>C on X, B on Y, S on Z: 29.661</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DCE/CORBA Bridge: Observations

- Delay through bridge: 7 ms
- CORBA IIOP is bit faster than DCE RPC
- C++ faster than Java & much faster than Java Applet
- Bridge location impact is insignificant

http://www.engr.sjsu.edu/fatoohi/eosdis/Vandana.pdf
<table>
<thead>
<tr>
<th>OODCE-CORBA Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>OODCE Server</td>
</tr>
<tr>
<td>OODCE Client</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C++ CORBA Client</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Java CORBA Client</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Alternatives to OODCE/DCE interface
(D. Jensen, S. Gawai & R. Fatoohi)

- **OODCE over IIOP**
 - Motivated by Java RMI over IIOP
 - IIOP is mature & well-supported technology
 - No change to application code
 - Work in progress

- **Source-level Migration**
 - Encapsulate CORBA stubs & skeletons within OODCE-style classes
 - Use idl++, ORB & converter

http://www.engr.sjsu.edu/fatoohi/eosdis/ASMOC.pdf