Error in Measurement

- Error = $\varepsilon \equiv x_{\text{meas}} - x_{\text{true}}$
 - Error is present in every measurement
 - Best we can do is estimate a bound on ε with some level of certainty
 - $-u \leq \varepsilon \leq u$ (n:1)
 where u is the uncertainty estimated at odds of n:1, or equivalently,
 - $x_{\text{meas}} - u \leq x_{\text{true}} \leq x_{\text{meas}} + u$ (n:1)
 - Wider interval at higher odds
 - Narrower interval at lower odds
The Goal

- Statements of uncertainty associated with measurement results
 - “A measurement result is complete only when accompanied by a quantitative statement of its uncertainty.”

- Example
 - \(Y = y \pm u_c(y) \) 95% confidence or (n:1) odds

Probability and Odds

- Probability \(\equiv\) the likelihood of a particular event taking place measured with reference to all possible events.
 - The probability of rolling 'snake eyes' [••] with a pair of dice is 1/36

- Odds \(\equiv\) the ratio of the probability of an event to the probability that it does not happen:
 - Odds = \(p/(1-p) \)
 - The odds of rolling snake eyes with a pair of dice is \((1/36)/(35/36) \Rightarrow 1 \) in 35
 - Helpful in magnifying small or large probabilities by expressing them as a ratio of whole numbers.
 - What probability does odds of 19:1 correspond to?
Important Definitions

♦ **Calibration** = the process of applying known values of a measurand to determine the response of a measurement system
 - *Static* Calibration = calibration using a constant measurand
 • Ex. Weights applied to a scale
 - *Dynamic* Calibration = calibration using a time-dependent measurand
 • Ex. Sinusoidal, step, impact

♦ **Sensitivity** = the change of output (measured value) per unit of input (measurand). Sensitivity is the slope of the static calibration curve at a given value of the input.

Calibration, Sensitivity, and Linearity

Graph:

- **Sensor Calibration**
- **Measurand input, x units**
- **Output, y units**
- **K = sensitivity**
Important Definitions, cont.

- **Accuracy** = the closeness of a measured value to the actual value being measured
- **Repeatability (precision)** = the ability of an instrument to repeat an output when measuring a given quantity under identical conditions
- **Resolution** = the smallest increment of change in the measured value that can be determined from the readout or recording instrument

Accuracy, Repeatability, and Systematic Error
Components of Uncertainty

- **Random effects (random or precision errors)**
 - Occur differently for each measurement
 - Creates a distribution of values
 - Arise from uncontrolled variables, e.g., ________________
 - Can use statistical methods to estimate the likely range that the true value lies in

- **Systematic effects (systematic or bias errors)**
 - Occur the same way for each measurement
 - Ex: 1st down measurement chain – too many links
 - Ex: Bubble level - vial misaligned
 - Arise from:
 - Calibration error
 - Loading error
 - Measurement disturbance
 - Aging of components in measurement equipment
 - Uncontrolled variables
Components of Uncertainty, cont.

- Systematic effects, cont.
 - In general, need more than statistical methods to determine
 - Can estimate using:
 - Comparison with more accurate standards
 - Compare with a different method of measuring the same variable
 - Self-calibration (reversal) sometimes
 - Inter-laboratory comparison
 - Experience

Calibration and Hysteresis

![Sensor Calibration with Hysteresis diagram](image_url)
References