Inertia Calculations

Cylindrical object (solid) of diameter D (radius R=D/2) and mass, M

\[J_{aa} = \frac{1}{2} MR^2 = \frac{1}{8} MD^2 \]
\[= \frac{1}{2} \pi \rho l R^4 = \frac{1}{32} \pi \rho l D^4 \]

\(J_{aa} \) = mass moment of inertia about axis aa (polar moment of inertia)

\(\rho \) = density of the material

\(l \) = length of cylinder

Cylindrical object (hollow) with inner diameter \(D_i \) (radius \(R_i = D_i/2 \)), outer diameter \(D_o \) (radius \(R_o = D_o/2 \)), and mass, M

\[J_{aa} = \frac{1}{2} M(R_o^2 + R_i^2) = \frac{1}{8} M(D_o^2 + D_i^2) \]
\[= \frac{1}{2} \pi \rho l (R_o^4 - R_i^4) = \frac{1}{32} \pi \rho l (D_o^4 - D_i^4) \]

Direct drive load

\[J_{tot} = J_{motor \ armature} + J_{load} \]

*Note: Shafts do have inertia, but their contribution to \(J_{tot} \) is often negligible. Why?
Gear driven load

\[J_{\text{tot}} = J_{\text{motor armature}} + J_{\text{gear 1}} + (N_1/N_2)^2 \left[J_{\text{gear 2}} + J_{\text{gear 3}} + (N_3/N_4)^2 \left\{ J_{\text{gear 4}} + J_{\text{load}} \right\} \right] \]

\(N_i \) is the number of gear teeth on gear \(i \). \(N_i/N_j \) is the gear ratio between gears \(i \) and \(j \).

(Note that the polar moment of inertia terms in the equation above refer to their central principal values about their axes of rotation)

Leadscrew driven load

\[J_{\text{tot}} = J_{\text{motor armature}} + J_{\text{leadscrew}} + \frac{M}{(2\pi p)^2} \frac{1}{e} \]

\(p \) = leadscrew pitch (threads/length)
\(e \) = efficiency of leadscrew
\(M \) = mass of load
\(\rho \) = density of leadscrew material

Tangentially driven load

\[J_{\text{tot}} = J_{\text{motor}} + J_{\text{pulley 1}} + J_{\text{pulley 2}} + MR^2 + M_{\text{belt}}R^2 \]
where \(J_{\text{pulley i}} \) is the polar moment of inertia for pulley \(i \) about its rotational axis, \(M_{\text{belt}} \) is the mass of the belt, and \(R \) is the radius of both pulleys.